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Procedures for in vitro selection and cloning 
The key selection step of each round is shown in Fig. 2b, and full nucleotide details are depicted in 

Fig. S1. The DNA anchor oligonucleotide sequence was 5-GGATAATACGACTCACTAT-3. The 5-ImpDNA 
sequence was 5-TATGTTCTAGCGCTTCG-3, prepared as described below. The random deoxyribozyme 
pool was 5-CGAAGCGCTAGAACAT-N40-ATAGTGAGTCGTATTAAGCTGATCCTGATGG-3. PCR primers were 
5-CGAAGCGCTAGAACAT-3 (forward primer) and 5-(AAC)4XCCATCAGGATCAGCT-3, where X is the HEG 
spacer to stop Taq polymerase (reverse primer). In each round, the ligation step to attach the 
deoxyribozyme pool at its 3-end with the 5-end of the amine-containing substrate was performed using a 
DNA splint and T4 DNA ligase. The splint sequence was 5-ATAGTGAGTCGTATTATCCTCCATCAGGATCA-
GCTTAATACGACTCACTAT-3, where the underlined T is included to account for the untemplated A 
nucleotide that is added at the 3-end of each PCR product by Taq polymerase. This T nucleotide was 
omitted from the splint used for ligation of the initially random N40 pool, which was prepared by solid-
phase synthesis without the untemplated A. 

Procedure for preparation of 5-ImpDNA. A 60 µL sample containing 1.0 nmol of 5-phosphorylated 
DNA, 100 mM 1-ethyl 3-(3-dimethylaminopropyl) carbodiimide (EDC), and 100 mM imidazole (pH 6.0 
with HCl) was incubated at room temperature for 2 h. A Micro Bio-Spin P-6 desalting column (Bio-Rad) 
was prepared by centrifuging at 1000 g for 1 min and rinsing 4 by adding 500 µL of water followed by 
centrifuging at 1000 g for 1 min. The 60 µL sample was applied to the column and eluted by centrifuging 
at 1000 g for 4 min. The resulting sample was quantified by UV absorbance (A260). 

Procedure for ligation step in round 1. A 25 µL sample containing 600 pmol of DNA pool, 750 pmol 
of DNA splint, and 900 pmol of DNA-C3-NH2 or DNA-HEG-CKA substrate was annealed in 5 mM Tris, 
pH 7.5, 15 mM NaCl, and 0.1 mM EDTA by heating at 95 °C for 3 min and cooling on ice for 5 min. To 
this solution was added 3 µL of 10 T4 DNA ligase buffer (Fermentas) and 2 µL of 5 U/µL T4 DNA 
ligase (Fermentas). 10 T4 DNA ligase buffer that lacks DTT (400 mM Tris, pH 7.8, 100 mM MgCl2, and 
5 mM ATP) was used with disulfide-linked oligonucleotide-peptide conjugates. The sample was incubated 
at 37 °C for 12 h and purified by 8% PAGE. 

Procedure for ligation step in subsequent rounds. A 17 µL sample containing the PCR-amplified 
DNA pool (~5–10 pmol), 30 pmol of DNA splint, and 50 pmol of DNA-C3-NH2 or DNA-HEG-CKA 
substrate was annealed in 5 mM Tris, pH 7.5, 15 mM NaCl, and 0.1 mM EDTA by heating at 95 °C for 3 
min and cooling on ice for 5 min. To this solution was added 2 µL of 10 T4 DNA ligase buffer 
(Fermentas) and 1 µL of 1 U/µL T4 DNA ligase (Fermentas). 10 T4 DNA ligase buffer that lacks DTT 
(400 mM Tris, pH 7.8, 100 mM MgCl2, and 5 mM ATP) was used with disulfide-linked oligonucleotide-
peptide conjugates. The sample was incubated at 37 °C for 12 h and purified by 8% PAGE. 

Procedure for selection step in round 1. Each selection experiment was initiated with 200 pmol of the 
ligated pool. A 20 µL sample containing 200 pmol of ligated pool and 300 pmol of 5-ImpDNA was 
annealed in (conditions A) 5 mM HEPES, pH 7.5, 15 mM NaCl, and 0.1 mM EDTA or (conditions B) 5 
mM CHES, pH 9.0, 15 mM NaCl, and 0.1 mM EDTA by heating at 95 °C for 3 min and cooling on ice for 
5 min. The selection reaction was initiated by bringing the sample to 40 µL total volume containing 
(conditions A) 70 mM HEPES, pH 7.5, 40 mM MgCl2, 20 mM MnCl2, 1 mM ZnCl2, and 150 mM NaCl or 
(conditions B) 50 mM CHES, pH 9.0, 40 mM MgCl2, and 150 mM NaCl. The Mn2+ was added from a 10 
stock solution containing 200 mM MnCl2. The Zn2+ was added from a 10 stock solution containing 10 
mM ZnCl2, 20 mM HNO3, and 200 mM HEPES at pH 7.5; this stock solution was freshly prepared from a 
100 stock of 100 mM ZnCl2 in 200 mM HNO3. The metal ion stocks were added last to the final sample. 
The sample was incubated at 37 °C for 14 h. 

Procedure for selection step in subsequent rounds. A 10 µL sample containing the ligated pool and 30 
pmol of 5-ImpDNA was annealed in (conditions A) 5 mM HEPES, pH 7.5, 15 mM NaCl, and 0.1 mM 
EDTA or (conditions B) 5 mM CHES, pH 9.0, 15 mM NaCl, and 0.1 mM EDTA by heating at 95 °C for 3 
min and cooling on ice for 5 min. The selection reaction was initiated by bringing the sample to 20 µL 
total volume containing (conditions A) 70 mM HEPES, pH 7.5, 40 mM MgCl2, 20 mM MnCl2, 1 mM 
ZnCl2, and 150 mM NaCl or (conditions B) 50 mM CHES, pH 9.0, 40 mM MgCl2, and 150 mM NaCl. 
The sample was incubated at 37 °C for 14 h. 
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Determination of reaction product of the 9DT114 deoxyribozyme 
The 9DT114 deoxyribozyme forms a reaction product with kobs 0.17 h–1, requiring both Mn2+ and Zn2+ 

for optimum yield (Fig. S9a). A DNA substrate with 3ʹ-OH was used, because the 3ʹ-HEG-CKA segment 
was found to be dispensable for catalysis. The DNA substrate was 5ʹ-GGATAATACGACTCACTAT-3ʹ, where 
the 3ʹ-terminal T is designated as T(–1), the adjacent A is A(–2), and so on. The T nucleotide in the 
deoxyribozyme 3ʹ-binding arm located across from A(–5) in the substrate was found to be deleted; 
restoring this T into the binding arm led to complete loss of catalytic activity (data not shown). 

Experiments were performed to determine the connectivity of the product formed by 9DT114 (Fig. 
S9b). Three 5ʹ-32P-radiolabeled DNA substrates with 3ʹ-OH were prepared, each with a single 
ribonucleotide substitution at one of C(–4), A(–5), or C(–6). All three ribo-substituted substrates were 
accepted by 9DT114. The product from each substrate was isolated by PAGE and cleaved under alkaline 
conditions (100 mM NaOH, 75 °C, 2 h), which removes several nucleotides from the 3ʹ-end of the product 
and leaves behind a 2ʹ,3ʹ-cyclic phosphate. The 20% PAGE migration rates of the three products clearly 
reveal that C(–4) is the site of nucleophilic reactivity on the DNA substrate. The rC(–4) product, after 
alkaline cleavage, migrates considerably more slowly than does the analogous rC(–4) substrate after 
alkaline cleavage (green arrow in the figure). In contrast, the rA(–5) and rC(–6) products both migrate at 
the same position as their analogous ribo-modified substrates after alkaline cleavage. 

The only reasonable nucleophile on nucleotide C(–4) is its C4-NH2 group, which would form a 
phosphoramidate (P–N) bond upon reaction with 5ʹ-ImpDNA. To support the assignment of the C4-NH2 
functional group of nucleotide C(–4) as the 9DT114 modification site, a functional group deletion 
experiment was performed (Fig. S9c). Two new 5ʹ-32P-radiolabeled DNA substrates with 3ʹ-OH were 
prepared, using Glen Research phosphoramidites for solid-phase synthesis. Each substrate was substituted 
at C(–4) with either 5-methyl-2ʹ-deoxyzebularine (where zebularine is the cytidine analogue that lacks the 
C4-NH2 group) or 5-methyl-2ʹ-deoxycytidine as a control, noting that for zebularine, only the 5-methyl-2ʹ-
deoxy phosphoramidite is commercially available. After 48 h incubation, the parent substrate with 
cytidine provided 51% yield; the substrate with 5-methyl-2ʹ-deoxycytidine provided 7.2% yield; and the 
substrate with 5-methyl-2ʹ-deoxyzebularine provided 0.5% yield. Therefore, the 5-methyl modification by 
itself is deleterious but still allows activity, whereas removal of the C4-NH2 group almost completely 
abolishes activity. This finding is consistent with the conclusion that 9DT114 uses the C4-NH2 group of 
nucleotide C(–4) of the DNA substrate as the nucleophile. The identity of the trace amount of product 
observed with the 5-methyl-2ʹ-deoxyzebularine substrate is unknown; this product likely arises from 
secondary usage by 9DT114 of an alternate nucleophile in the substrate. 
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 Supporting Information for Brandsen et al., Angewandte Chemie page S20 

Background reaction rates and rate enhancement calculations 
As shown in Fig. S18, observed rate constants, kbkgd, for various background (uncatalyzed) reactions 

were determined for 5ʹ-ImpDNA reacting with either DNA-C3-NH2 or DNA-HEG-CKA under either 
conditions A (pH 7.5, Mg2+/Mn2+/Zn2+) or B (pH 9.0, Mg2+). The Imp functional group is relatively 
unstable under conditions A, and the background reaction yields increased very little after 24 h of 
incubation. Imp is more stable under conditions B, and yields continued to increase through 96 h. 

For both substrates under conditions A, the deoxyribozyme was replaced with either an exactly 
complementary DNA splint (equivalent to the deoxyribozyme but with deletion of the entire 40-nucleotide 
catalytic region; “n = 0”), a complementary DNA splint that includes a single unpaired T nucleotide in 
place of the 40-nucleotide catalytic region (“n = 1”), or the random N40 pool (“n = 40”). The n = 0 and 
n = 1 assays provide an overestimate of kbkgd for computing the rate enhancement (kobs/kbkgd), because the 
deoxyribozyme is structurally more complex than a simple n = 0 or 1 splint. In contrast, the n = 40 assays 
provide a fairer assessment of the catalytic roles of the particular 40-nucleotide regions. 

For both substrates under conditions B, a more expansive set of experiments was performed. The 
deoxyribozyme was replaced with n = 0, 1, 2, 3, and 4 splints (with 0 to 4 unpaired T nucleotides in place 
of the 40-nucleotide catalytic region), the n = 40 random pool as splint, a “hairpin” splint in which the 40-
nucleotide catalytic region was replaced with a well-defined 6 bp stem-loop structure, or a “scrambled 
hairpin” splint in which the stem-loop sequence was scrambled and therefore lacked any secondary 
structure. The hairpin splint has the effect of merely holding the two substrate-containing duplexes close 
together, which would be achievable by a 40-nucleotide catalytic region that is selected for simple hairpin 
formation rather than formation of a more sophisticated catalytic structure. The scrambled hairpin splint is 
functionally equivalent to a random pool splint that has n = 16 nucleotides. 

For the DNA-C3-NH2 and DNA-HEG-CKA substrates under conditions A, the n = 40 yields at 24 h 
were 0.22% and 0.20%, respectively. From these values, we estimate kbkgd  10–4 h–1 in both cases. Noting 
kobs as high as 1.2 h–1 for DNA-C3-NH2 (Fig. 3) and 0.08 h–1 for DNA-HEG-CKA (Fig. 4), the 
corresponding rate enhancements (kobs/kbkgd) are ~104 and ~103. 

For the DNA-C3-NH2 substrate under conditions B, the yields at 96 h for the n = 40 and scrambled 
hairpin splint were 2.2% and 2.5%, respectively, corresponding to kbkgd of ~2  10–4 h–1. With kobs of ~0.03 
h–1 for the 7DX1 deoxyribozymes (Fig. S6), the rate enhancements (kobs/kbkgd) are 150 (~102). 

For the DNA-HEG-CKA substrate under conditions B, the yields at 96 h for the n = 40 and scrambled 
hairpin splint were 1.9% and 1.6%, respectively, corresponding to kbkgd of ~2  10–4 h–1. With kobs of ~0.05 
h–1 for the 14DV1 deoxyribozymes (Fig. S10), the rate enhancements (kobs/kbkgd) are 250 (~102). 

Note that for the DNA-C3-NH2 background assay under conditions B, the hairpin splint gave much 
lower yield than did the n = 0 splint (7% versus 60% at 96 h). This finding emphasizes the very high 
degree of preorganization provided by the n = 0 splint and supports the use of the n = 40 splint to compute 
kbkgd. In this assay, also note the steady drop in yield from n = 0 to n = 4, the equivalent yields for n = 4 
and the hairpin splint, and the equivalent yields for n = 40 and the scrambled hairpin splint. 
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