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Procedure for ligation step in round 1. The splint sequence was 5′-ATAGTGAGTCGTATTATCCTCCATC-
AGGATCAGCTTAATACGACTCACTAT-3′, where the underlined T is included to account for the untemplated 
A nucleotide that is added at the 3′-end of each PCR product by Taq polymerase. This T nucleotide was 
omitted from the splint used for ligation of the initially random N40 pool, which was prepared by solid-
phase synthesis without the untemplated A. A 35 µL sample containing 1 nmol of DNA pool, 800 pmol of 
DNA splint, and 500 pmol of 5′-phosphorylated DNA-anchored hexapeptide substrate was annealed in 5 
mM Tris, pH 7.5, 15 mM NaCl, and 0.1 mM EDTA by heating at 95 °C for 3 min and cooling on ice for 5 
min. To this solution was added 4 µL of 10× T4 DNA ligase buffer (400 mM Tris, pH 7.8, 100 mM 
MgCl2, and 5 mM ATP) and 1 µL of 5 U/µL T4 DNA ligase (Fermentas). The sample was incubated at 37 
°C for 12 h and separated by 8% PAGE. 

 
Procedure for ligation step in subsequent rounds. The same splint was used as in the round 1 ligation 

procedure. A 17 µL sample containing the PCR-amplified DNA pool (~5–10 pmol), 25 pmol of DNA 
splint, and 50 pmol of 5′-phosphorylated DNA-anchored hexapeptide substrate was annealed in 5 mM 
Tris, pH 7.5, 15 mM NaCl, and 0.1 mM EDTA by heating at 95 °C for 3 min and cooling on ice for 5 min. 
To this solution was added 2 µL of 10× T4 DNA ligase buffer and 1 µL of 1 U/µL T4 DNA ligase 
(Fermentas). The sample was incubated at 37 °C for 12 h and separated by 8% PAGE. 

 
Procedure for selection step in round 1. Each selection experiment was initiated with 200 pmol of the 

ligated pool. A 20 µL sample containing 200 pmol of ligated pool and 300 pmol of 36 nt pppRNA 
phosphoryl donor was annealed in 5 mM HEPES, pH 7.5, 15 mM NaCl, and 0.1 mM EDTA by heating at 
95 °C for 3 min and cooling on ice for 5 min. The selection reaction was initiated by bringing the sample 
to 40 µL total volume containing 70 mM HEPES, pH 7.5, 1 mM ZnCl2, 20 mM MnCl2, 40 mM MgCl2, 
and 150 mM NaCl. The Mn2+ was added from a 10× stock solution containing 200 mM MnCl2. The Zn2+ 
was added from a 10× stock solution containing 10 mM ZnCl2, 20 mM HNO3, and 200 mM HEPES at pH 
7.5; this stock solution was freshly prepared from a 100× stock of 100 mM ZnCl2 in 200 mM HNO3. The 
metal ion stocks were added last to the final sample. For selections with GTP as the phosphoryl donor, the 
pppRNA was omitted and 1 mM GTP was added from a 10 mM stock solution after annealing. The 
sample was incubated at 37 °C for 14 h and separated by 8% PAGE. 

 
Procedure for selection step in subsequent rounds. A 10 µL sample containing the ligated pool and 50 

pmol of 36 nt pppRNA phosphoryl donor was annealed in 5 mM HEPES, pH 7.5, 15 mM NaCl, and 0.1 
mM EDTA by heating at 95 °C for 3 min and cooling on ice for 5 min. The selection reaction was 
initiated by bringing the sample to 20 µL total volume containing 70 mM HEPES, pH 7.5, 1 mM ZnCl2, 
20 mM MnCl2, 40 mM MgCl2, and 150 mM NaCl. For selections with GTP as the phosphoryl donor, the 
pppRNA was omitted and 1 mM GTP was added from a 10 mM stock solution after annealing. The 
sample was incubated at 37 °C for 14 h and separated by 8% PAGE. 

 
Procedure for capture step in round 1. A 28 µL sample containing ligated pool, 500 pmol of 54 nt 5′-

triphosphorylated RNA-DNA chimera substrate, and 300 pmol of 8VP1 capture deoxyribozyme was 
annealed in 5 mM HEPES, pH 7.5, 15 mM NaCl, and 0.1 mM EDTA by heating at 95 °C for 3 min and 
cooling on ice for 5 min. The capture reaction was initiated by bringing the sample to 40 µL total volume 
containing 50 mM HEPES, pH 7.5, 20 mM MnCl2, and 150 mM NaCl. The sample was incubated at 37 
°C for 14 h. Before PAGE, to the sample was added 500 pmol of a 60 nt decoy oligonucleotide 
complementary to the 40 nt 8VP1 catalytic region and 10 nt of binding arm on each side, to ensure 
complete removal of the capture deoxyribozyme from the pool. The sample was separated by 8% PAGE. 

 
Procedure for capture step in subsequent rounds. A 14 µL sample containing ligated pool, 50 pmol of 

17 nt pppRNA substrate (in even rounds) or 54 nt 5′-triphosphorylated RNA-DNA chimera substrate (in 
odd rounds), and 25 pmol of 8VP1 capture deoxyribozyme was annealed in 5 mM HEPES, pH 7.5, 15 
mM NaCl, and 0.1 mM EDTA by heating at 95 °C for 3 min and cooling on ice for 5 min. The capture 
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reaction was initiated by bringing the sample to 20 µL total volume containing 50 mM HEPES, pH 7.5, 20 
mM MnCl2, and 150 mM NaCl. The sample was incubated at 37 °C for 14 h. To the sample was added 
100 pmol of a 60 nt decoy oligonucleotide complementary to the 40 nt 8VP1 catalytic region and 10 nt of 
binding arm on each side (note that the decoy sequence is different in even-numbered and odd-numbered 
rounds). The product was separated by 8% PAGE. 

 
Procedure for PCR in subsequent rounds. In each selection round, two PCR reactions were 

performed, 10-cycle PCR followed by 30-cycle PCR. First, a 100 µL sample was prepared containing the 
PAGE-separated capture product, 200 pmol of forward primer, 50 pmol of reverse primer, 20 nmol of 
each dNTP, and 10 µL of 10× Taq polymerase buffer (200 mM Tris-HCl, pH 8.8, 100 mM (NH4)2SO4, 
100 mM KCl, 20 mM MgSO4, and 1% Triton X-100). This sample was cycled 10 times according to the 
following PCR program: 94 °C for 2 min, 10× (94 °C for 30 s, 47 °C for 30 s, 72 °C for 30 s), 72 °C for 5 
min. Taq polymerase was removed by phenol/chloroform extraction. Second, a 50 µL sample was 
prepared containing 1 µL of the 10-cycle PCR product, 100 pmol of forward primer, 25 pmol of reverse 
primer, 10 nmol of each dNTP, 20 µCi of α-32P-dCTP (800 Ci/mmol), and 5 µL of 10× Taq polymerase 
buffer. This sample was cycled 30 times according to the following PCR program: 94 °C for 2 min, 30× 
(94 °C for 30 s, 47 °C for 30 s, 72 °C for 30 s), 72 °C for 5 min. Samples were separated by 8% PAGE. 
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